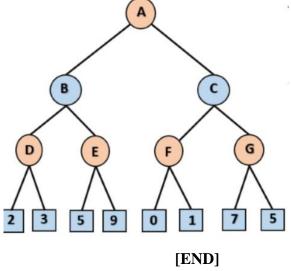
National Institute of Technology Silchar End-Semester (PG/Ph.D) Examinations, Nov-Dec 2023

Subject Code: CS 5202Subject: Artificial IntelligenceSemester: 1st SemesterDepartment: Computer Science

Department: Computer Science & Engineering


Duration: Two Hours

Answer any 5 (five) questions.

Total Marks: 50

		Monka	СО
		Marks	CO
1. (a)	Explain various types of Agents.	4	CO-1
(b)	What is state-space search approach? Explain state-space for vacuum cleaner problem.	4	CO-1
(c)	Though computing is a relatively new discipline, philosophers and mathematicians have been thinking about the issues involved in automated problem solving for thousands of years.	2	CO-2
	What is your opinion of the relevance of these philosophical issues in the development of intelligent machine?		
2. (a)	Explain Uniform Cost Search Algorithm with an example.	4	CO-1
(b)	Find the optimal path by using A* algorithm, if any:	_	
	Start: Timisoara Goal: Bucharest	6	CO-4
	Straight-line distance to BucharestArad366 BucharestArad366 BucharestMand99 FagarasForie140 BoretaArad366 BucharestMand99 FagarasForie140 FagarasArad366 BucharestBucharest0 CraiovaClurgiu77 HirsovaHirsova151 IasiIasi226 LugojLugoj244 MehadiaMehadia101 HirsovaJobreta242 PobretaEforie100 HirsovaTimisoara320 VasluiVizceni98 PitestiMehadia211 VizceniVaslui231 VasluiJobreta232 VasluiJobreta342		
3. (a) (b)	What is Constraint Satisfaction Problem? Write value of SEND+MORE=MONEY.	4	CO-3
	 Constraints in this Cryptarithmetic Problem are: Each alphabet takes only one number from 0 to 9 uniquely. No two digits can be assigned to the same latter. Only the single digit number can be assigned to a letter. Sum of two single digit numbers can be maximum 19. 	6	CO-3
4. (a)	 Prove this problem by using Resolution Refutation method. Consider the following axioms: Anyone passing his AI exam and winning the lottery is happy. Anyone who studies or is lucky can pass all his exams. John did not study but he is lucky. Anyone who is lucky wins the lottery. 	6	CO-3
	Prove that John is happy.		
(b)	Explain Monotonic and Non-monotonic reasoning with example.	4	CO-1
		[F	PTO]

		Marks	CO
5. (a)	Explain Modus Ponens and Modus Tollens with example.	4	CO-1
(b)	Write short notes on:		
	Semantic NetsFramesConceptual Graphs	6	CO-2
		_	~~ ~ ~
6. (a)	Explain Bayes' theorem with example.	4	CO-1
(b)	Explain Min-Max algorithm and Alpha-beta pruning algorithm of the following example:	6	CO-4

